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BACKGROUND 
 
In the Fall of 2015, President Obama unveiled the College Scorecard, an online tool aimed at bringing much desired transparency to higher 
education. The intention of the College Scorecard is to put power back into the hands of post-secondary education consumers, enabling them 
to make more informed choices about what may be among the most consequential financial decisions of their lifetime. The College Scorecard 
consists of thousands of variables for thousands of schools going back almost two decades. Colloquially speaking, it is a data dump.  
 
While the College Scorecard offers a boon of data, the biggest challenge is to make sense of it all. It is fairly straightforward to search, filter, 
or sort by specific fields of information for specific schools. However, average SAT scores of admitted students do not alone tell the whole 
story about the selectivity of a school; nor do average earnings data for a 10-year post-matriculation cohort of students receiving federal 
financial aid tell the whole story about the robustness of earnings from a particular school. And certainly, there is no variable in the dataset 
that is a good proxy for a relative value-add, that is, how much graduates exceed expectations following graduation—a metric that should be 
near the top of the list for post-secondary schools to strive to maximize. 
 
Often, experts make rankings based on a handful of variables and assign their own weights to those variables based on their personal opinions 
of their relative importance. This can lead to fairly arbitrary rankings and produce very low reliability between different experts (Kamenetz, 
2015). In fact, it is likely that most of the established college rankings end up informing one another in a process called herding (Banerjee, 
1992), which is also a phenomenon that is mirrored by the behavior of universities attempting to increase their ranks (Morphew & Swanson, 

2011).  
 
Only a minority of the possible data actually exist—most 
elements are missing. Not all data are required to be reported, 
and there is great variance in the types of data provided by 
schools along with the volume. It is a very messy dataset with 
many caveats. The question is: what is the best way to take in 
the totality of the information in the data to create robust 
models, metrics, and rankings for schools in the dataset? 
 
Fundamentally, this is a problem of feature engineering. With 
high-dimensional datasets, the so-called “curse of 
dimensionality” often rears its head. Also known as Hughes 
Phenomenon, this refers to the tendency for data points in a 
space to become further disjointed as the dimensionality of 
the space grows, requiring more data points just to maintain 
predictive accuracy (Hughes, 1968). Couple this with the large 
amount of missing data, and the problem becomes thornier. 
 
The solution that we propose is to use neural networks to 
perform representational learning on the data. In other 
words, instead of manually going through the dataset and 
engineering a handful of features, we propose to use neural 
networks to automatically encode (autoencode) the 
information, including information about where data are 
missing, in a smaller dimensional space. Similar to principal 

components analysis (PCA), auto-encoding via neural networks is a dimension-reducing technique, but is more apt at handling variables that 
are nonlinearly related. In fact, it could be thought of as a more generalized version of PCA. Of course, such compression is lossy, but much of 
the information lost will be uninteresting noise and redundancies. 
 
In this research brief, we present several pedagogical examples of representational learning using the College Scorecard dataset. First, we 
produce a two-dimensional map of thousands of schools showing how individual schools evolved over the period 2004 to 20141. One of these 
dimensions appears to be a measure of college quality, a concept learned by the algorithm on its own. We also build a classifier to predict 
whether or not a school is considered an “Ivy League” school and find a set of schools that are adequately similar to those institutions. Lastly, 
we show how to derive estimates for abstract measures such as value-over-replacement-school (VORS)—a metric similar in concept to value-
over-replacement-player (VORP) in sports analytics (Woolner, 2001). 
  

Figure 1. Architecture of an example autoencoder 
 

 
Architecture of an example autoencoder Neural Network that reduces 
eight dimensions down to two. For our analysis, much larger dimension 
reductions are performed over many more hidden layers. 

                                                 
1 Despite the latest release of data in September 2017, there is not much data available yet for the 2014—2015 school year and beyond. 



METAMETRICS RESEARCH BRIEF 
A New School of Thought for Our Thoughts on Schools: Using Neural Networks to Enable Novel Higher Education Analytics 
 

 
 

 
ANALYSES 
 
Data Summary 
 
Although all of the schools in the College Scorecard could theoretically be included in the analyses in this research brief, we limit our focus to 
schools that are typical four-year undergraduate programs, have greater than 100 undergraduate students enrolled, and report SAT scores—
SAT scores being a convenient filter for schools that are reporting enough useful data. Furthermore, we limit our analyses to data from the 
2004—05 school year and beyond, a range where there is a greater deal of data consistently available. In total, there are 1,503 unique schools 
included in our analyses and a total of 16,766 schools by year combinations. 
 
The College Scorecard provides data across a handful of categories such as degree types, admissions (SAT scores), student demographics, 
financial aid, cost, future earnings, and more. Each of the categories contains many variables for many schools over many years. As previously 
mentioned, a lot of the data is missing (approximately 41% between 2004 and 2014). However, even though a given variable or school has a 
lot of missing data, that does not mean that the information that is available is not useful. 
 
Pre-processing data 
 
The College Scorecard data has some important variables that are lagged and it could be beneficial to “unlag” them. For example, at any given 
year of data there may be earnings data from the US Treasury department for a particular cohort. A 10-year cohort in 2013 would be more 
relevant in the 2002—03 dataset since that is the school 
year when those students matriculated. Table 1 shows 
where various cohort earnings data exists for students 
that received at least some level of federal funding. 
 
Furthermore, some variables are categorical and include 
values for flags. These variables are expanded out so that 
each unique flag is represented by its own dichotomous 
(i.e. one-hot) variable. 
 
The data was structured as a large matrix that includes one row per school per year and the columns include all of the available fields of data. 
Data is unlagged where applicable. The resulting matrix is 16,766 rows by 2,361 columns. 
 
Encoding data 
 
As previously mentioned, a main concept is that we can encode sets of variables into vectors that are more manageable than the full set of 
individual data elements taken together. In addition to the existing data, information about what data is missing is also itself encoded in these 
vectors. This is important since the data are missing-not-at-random (MNAR); in other words the fact that an element is missing may be useful 
information in and of itself.  
 
There is a potentially useful consequence to treating the missing data as MNAR: schools cannot expect to game metrics by selectively omitting 
data—the algorithm may have the capability to detect the relationships between patterns of missing data. If schools have a tendency to omit 
unfavorable data, the algorithm has the potential to learn and account for that fact. 
 
Instead of encoding all of the data at once, data was first encoded by category (e.g., admissions, earnings, etc.). Not only does this allow for 
encoding more manageable chunks of data and move more towards a balanced dataset, but it allows for discrete categories of data to be 
combined and incorporated into further encoding. Before a given category of variables are encoded, indicator variables for missing data are 
augmented to the set, the missing data elements themselves are replaced by the mean of the existing data for their class2, and all variables 
with no variance (i.e. carrying no useful information) are discarded. This set of variables is then normalized such that all values are between 
zero and one. All years (2004—2015) were encoded simultaneously and each school could be present for multiple years, which means that 
information about the year and its relationship to different patterns of missing data was also included. To ensure that trends in patterns of 
missing data across years did not result in a time dimension being important to encoding (we want to be able to compare schools at different 
years in the same space), encoding was done by using a fixed year as a target. The 2011—12 school year was used as a target since it has the 
most complete data. That is, auto-encoding was performed on just 2011—12 data first, followed by using those encoded 2011—12 vectors as 
targets for encoding vectors from all of the various other years. 

Table 1. Existence of earnings cohort data by matriculation school year 
 

Cohort 2001—
02 

2002—
03 

2003—
04 

2004—
05 

2005—
06 

2006—
07 

2007—
15 

10Y        
9Y        
8Y        
7Y        
6Y        

                                                 
2 This is a reasonable placeholder value that should be minimally disruptive during neural network training and the choice of the imputed value 
should be mostly washed out. In other words, the pattern of missing data will end up being more important to the model than the specific 
value used to replace the missing data element. 
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On a technical note, many neural networks mentioned in this brief are trained using dropout (Srivastava et al, 2014) as a regularization method 
to prevent over-fitting, with the probability of randomly keeping a node during training at p = 0.5. Regardless of whether or not a specific 
training is done with dropout or other regularization techniques, the results are confirmed as not overfitting using a holdout validation data 
set (i.e. data that was not used in the training). 
 
Two-dimensional representation and overall college quality 
 
Humans can visualize three dimensions pretty well, but a sheet of paper can really only show two dimensions well. Can we reduce all 3,599 
variables in the dataset (when missing data indicators are included) down to just two variables in a way that retains the most information 
possible? And if so, will the results be meaningful and interpretable? 
 

Since we want to include all of the available data, we take all 
of our previously encoded categories and create an 
augmented dataset. This dataset, which now has 836 
dimensions, is subjected to an autoencoder with progressively 
smaller dimensioned layers starting at 300 and going to 75, 
20, five, and finally two. The overall neural network 
architecture to go from the original dataset down to two 
dimensions is shown in Fig. 2.  
 
As the trainings were completed, it became clear that the 
neural networks were figuring out that the best way to 
encode all of this information into two variables was to 
encode them into variables that appear to be best described 
as quantity and quality. 
 
Because training neural networks is a stochastic process and 
can result in solutions that are different, but with nearly the 
same individual performance (in terms of encoding the 
original information), we trained an ensemble of 60 deep 
neural networks and averaged over them. Before the 
averaging, care was taken to apply a rotation to the individual 
two-dimensional vectors so that they aligned in a consistent 

fashion with the dimension corresponding overwhelmingly with size-related metrics as the first dimension and the dimension corresponding 
to quality-related metrics as the second dimension. 
 
Fig. 3 shows the resulting two-dimensional representational map of 1,303 American colleges and universities in the 2013—2014 school year. 
A set of contour lines are overlaid that show the approximate average SAT scores for the schools at various points in the plot.  
 
These contours are the result of a simple bivariate quadratic function regression using just the two dimensions. Of course, when reducing over 
three-thousand dimensions down to just two, much of the variance is smoothed over and some schools, especially those at the edges of the 
map, may have actual SAT scores that are more than 100 points different than is shown in the contours. Average SAT score is just one 
dimension out of thousands being encoded into two dimensions, yet the RMSE for the SAT score model is just 63 points and the correlation 
between the modeled and actual SAT average is 0.87, which are both respectable given the context. 
 
Fig. 4 shows how the top schools, overall and public, evolve over the “quality” dimension between the 2004—05 and 2013—14 school years. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Architecture of the College Scorecard autoencoder 
 

 
Architecture of the College Scorecard autoencoder Neural Network that 
reduces 3,599 dimensions down to two. Each layer of the network is 
labeled with the number of neurons (or nodes). The decoder portion is not 
shown. Blue areas denote fully connected layers of neurons. Not drawn to 
scale. 



METAMETRICS RESEARCH BRIEF 
A New School of Thought for Our Thoughts on Schools: Using Neural Networks to Enable Novel Higher Education Analytics 
 

 
 

 
 

 
 

 
 
 
 

Figure 3. 2D map of American colleges and universities 

  
 
2D map of 1,303 American colleges and universities in the 2013—14 school year. The top 10 overall and top 10 public schools are shown 
in school colors. Circle areas are proportional to the size of the undergraduate population. Contour lines show approximate average SAT 
scores for matriculating students. 

Figure 4. School Quality between 2004—2014 

  
 
School quality between the 2004—05 and 2013—14 school years. The top 10 overall and top 10 public schools are shown in school colors. 
Line widths are proportional to the size of the undergraduate population. 
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The “Hidden” Ivies 
 
There are eight schools that are members of the renowned Ivy League: Brown University, Columbia University, Cornell University, Dartmouth 
College, Harvard University, the University of Pennsylvania, Princeton University, and Yale University. All of these universities are top 
universities, but is there something about them that makes them uniquely “Ivy” other than being part of a very old athletic conference? 
Perhaps there are other schools that have enough signature qualities of an Ivy League school that makes them just as Ivy as any of those eight 
schools. This idea was explored in the book The Hidden Ivies (Greene & Greene, 2014), now in its third edition. The father and son duo of 
Howard and Matthew Greene have thoroughly researched the landscape of post-secondary schools to identify a set of 63 schools (from edition 
three) that could be classified as Ivy League schools. 
 
As a second illustration of a use case for processing College Scorecard data with neural networks, we train a neural network classifier to identify 
Ivy League schools. The model ends up providing a measure for the likelihood that a school is a member of the Ivy League based on its 300 
values in the 3rd layer of the autoencoder shown in Fig. 2. If the average likelihood of a school over the years 2004—2014 exceeds that of the 
lowest average over the same period of the set of Ivies, we identify it as a hidden Ivy. There are 51 schools outside of the Ivies themselves 
that meet that criterion. Furthermore, we identify a set of nine schools that are trending towards hidden Ivy status in the near future and a 
set of the 20 schools that are the next closest to being classified as a hidden Ivy. 
 

Table 2. The “Hidden” Ivies 
 

Our 51 Hidden Ivy Members 
Amherst College 
Barnard College 
Boston College 
Bowdoin College 
Brandeis University 
Bryn Mawr College 
Bucknell University 
California Institute of Technology* 
Carnegie Mellon University* 
Case Western Reserve University 
Claremont McKenna College 
Colgate University 
Colorado College 
Cooper Union for the Advancement of Science 

and Art* 
Duke University 
Emory University 
Fordham University 

George Washington University* 
Georgetown University 
Hamilton College 
Haverford College 
Jewish Theological Seminary of America* 
Johns Hopkins University 
Lehigh University 
Massachusetts Institute of Technology* 
Middlebury College 
Northwestern University 
Oberlin College 
Polytechnic Institute of New York University* 
Pomona College 
Rensselaer Polytechnic Institute* 
Rice University 
Skidmore College 
Smith College 

Stanford University 
Swarthmore College 
Trinity College 
Tufts University 
University of Chicago 
University of Notre Dame 
University of Richmond 
University of Rochester 
Vanderbilt University 
Vassar College 
Villanova University 
Washington University in St Louis 
Washington and Lee University 
Wellesley College 
Wesleyan University 
Williams College 
Yeshiva University* 

Our Nine Hidden Ivy Prospects 
Colby College 
Connecticut College 
Franklin W Olin College of Engineering* 

Grinnell College 
Kenyon College 
Lafayette College 

Sewanee-The University of the South 
St Mary's College of Maryland* 
Wheaton College* 

Our 20 Other Almost Hidden Ivy 
Babson College* 
Bentley University* 
Boston University 
Brigham Young University at Provo* 
Davidson College 
Drew University* 
Gettysburg College* 

Illinois Institute of Technology* 
New York University* 
Occidental College* 
Reed College 
Santa Clara University* 
Southern Methodist University 
Stevens Institute of Technology* 

Syracuse University* 
Union College 
University of North Carolina at Chapel Hill* 
University of Southern California 
University of Virginia* 
Wake Forest University 

*Not identified as a hidden Ivy in Hidden Ivies Greene & Greene (2014).  
 
It is remarkable to see the degree of agreement—in both the schools included and the number of schools included—between the Greenes’ 
research and the output of a neural network working on an extensive set of publicly available data. There are only six out of 63 schools 
identified by the Greenes (and had sufficient data in the College Scorecard) that did not make it into our table. 
 
Although these are all great schools, it is important to note that these “hidden” Ivies do not simply make up the list of the most elite schools 
that are not Ivies. Many equally or more competitive schools did not make it into Table 2 because they have enough characteristics that make 
them distinctly different from Ivy League schools. Likewise, many of the schools in Table 2 are relatively non-competitive academically with 
Ivy League schools, but have many other similarities to the Ivies. The model is identifying a signature for an Ivy League school that extends 
well beyond SAT scores and acceptance rates to all of the thousands of additional fields in the College Scorecard, some of which could be fairly 
superficial, such as the geographic location or demographic makeup of the school. 
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Value over replacement school (VORS) 
 
In baseball, in addition to other sports, there is a statistic known as value over replacement player (VORP). This is a statistic used to capture 
the marginal utility of a player, that is, the amount of output they produce (such as runs in baseball) relative to a player from the existing 
talent pool (Woolner, 2001). The same concept can be applied to post-secondary schools. The value over replacement school (VORS) can be 
operationalized as the amount of additional earnings a school adds to a matriculating student relative to the expected earnings from schools 
with similar populations of matriculating students and the cost to attend. While the concept is similar to VORP, the methodology is 
fundamentally different—sports statistics tend to involve a lot of heuristics while we are using neural networks. 
 
Since earnings data is fairly sparse in the dataset and we 
would like to keep our analysis based on actual observed 
earnings instead of inferred or imputed data, we chose to 
only look at 10-year mean earnings for students who 
matriculated (not graduated) in the 2001—02 or 2002—03 
school year—the last year that such data is available (the 
data was last collected in 2013). 
 
The VORS statistic is the observed 10-year mean earnings 
minus the expected 10-year mean earnings, where the 
latter is the output from a neural network trained on 
admissions, cost, school, and student data. In other words, 
we are attempting to model average earnings based on the 
type of student that matriculates to a school and what the 
school charges them to attend. The top 25 VORS schools 
are shown in Table 3. 
 
A quick glance at the table yields something immediately 
obvious: most of the top 25 schools are either well-known 
elite institutions or provide a specialized education in 
fields such as business, engineering (especially marine 
engineering), medicine, and aerospace. While not shown, 
the lowest ranked schools are almost entirely art schools 
and liberal art schools. Many of these schools are at the 
bottom simply because they are highly selective and 
attract very talented students that would otherwise earn 
high incomes if they decided to pursue other careers. 
 
While the VORS statistic does a good job capturing the ability of individual schools to create additional economic value for their students, 
there are a few caveats. First, the earnings data from the Treasury Department only includes students who received at least some federal 
funding. Second, while creating economic value for students should be a high priority, enrichment does not need to be literal to have value. 
Third, future economic outcomes of students may not be fully driven by the academic and personal growth of a student while attending a 
specific university, but are likely also driven in large part by pre-existing and acquired social networks (Dale & Krueger, 2014) among other 
things. Finally, some schools did not have the required earnings data for the calculation.  
 
A useful potential addition to the College Scorecard would be GRE, GMAT, MCAT, and GMAT scores for graduating students. This would provide 
a richer picture of the caliber of graduating students when combined with earnings data. This could also yield individual level value-add over 
incoming SAT scores. Thus, if all instruments could be linked to a common scale (e.g., Lexile or Quantile scales) the value-add could be 
denominated in language and mathematical growth over the college career. 

Table 3. Value over replacement school (VORS) 
 

Rank School Name 

Observed 
10Y Mean 

Earnings VORS 
1 Albany College of Pharmacy and Health Sciences $112,000 $56,400 
2 Maine Maritime Academy $96,000 $48,000 
3 MCPHS University $104,000 $47,100 
4 Massachusetts Institute of Technology $133,000 $45,600 
5 Harvard University $135,000 $43,300 
6 University of the Sciences $90,000 $36,200 
7 Stanford University $124,000 $35,700 
8 Princeton University $112,000 $35,600 
9 Massachusetts Maritime Academy $82,000 $33,900 

10 Babson College $107,000 $32,700 
11 Yale University $118,000 $32,200 
12 California State University Maritime Academy $88,000 $31,100 
13 University of Pennsylvania $118,000 $29,400 
14 Georgetown University $114,000 $28,500 
15 Duke University $108,000 $25,900 
16 SUNY Maritime College $78,000 $24,500 
17 Dartmouth College $102,000 $23,600 
18 Xavier University of Louisiana $60,000 $23,400 
19 Washington and Lee University $89,000 $23,100 
20 Colorado School of Mines $86,000 $22,200 
21 Mount Carmel College of Nursing $56,000 $19,900 
22 Ohio Northern University $69,000 $18,200 
23 University of the Pacific $80,000 $17,100 
24 Claremont McKenna College $90,000 $16,600 
25 Baptist Memorial College of Health Sciences $54,000 $16,100 

*Now part of New York University 

 
CONCLUDING REMARKS 
 
The methodology described in this paper and the pedagogical use-cases provide a rich framework for advanced analytics of post-secondary 
education—something that the consequence of the industry and the unwieldiness of the data demands. It is our hope that a future 
proliferation of similar work will promote further transparency in the post-secondary school market, more holistic approaches to data use, 
and ultimately more complete, fairer, and objective metrics that empower students to make the best decisions. 
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